11,432 research outputs found

    Models of Cognition: Neurological possibility does not indicate neurological plausibility

    Get PDF
    Many activities in Cognitive Science involve complex computer models and simulations of both theoretical and real entities. Artificial Intelligence and the study of artificial neural nets in particular, are seen as major contributors in the quest for understanding the human mind. Computational models serve as objects of experimentation, and results from these virtual experiments are tacitly included in the framework of empirical science. Cognitive functions, like learning to speak, or discovering syntactical structures in language, have been modeled and these models are the basis for many claims about human cognitive capacities. Artificial neural nets (ANNs) have had some successes in the field of Artificial Intelligence, but the results from experiments with simple ANNs may have little value in explaining cognitive functions. The problem seems to be in relating cognitive concepts that belong in the `top-down' approach to models grounded in the `bottom-up' connectionist methodology. Merging the two fundamentally different paradigms within a single model can obfuscate what is really modeled. When the tools (simple artificial neural networks) to solve the problems (explaining aspects of higher cognitive functions) are mismatched, models with little value in terms of explaining functions of the human mind are produced. The ability to learn functions from data-points makes ANNs very attractive analytical tools. These tools can be developed into valuable models, if the data is adequate and a meaningful interpretation of the data is possible. The problem is, that with appropriate data and labels that fit the desired level of description, almost any function can be modeled. It is my argument that small networks offer a universal framework for modeling any conceivable cognitive theory, so that neurological possibility can be demonstrated easily with relatively simple models. However, a model demonstrating the possibility of implementation of a cognitive function using a distributed methodology, does not necessarily add support to any claims or assumptions that the cognitive function in question, is neurologically plausible

    Test instrumentation evaluates electrostatic hazards in fluid system

    Get PDF
    RJ-1 fuel surface potential is measured with a probe to determine the degree of hazard originating from static electricity buildup in the hydraulic fluid. The probe is mounted in contact with the fluid surface and connected to an electrostatic voltmeter

    Analysis and design of a flat central finned-tube radiator

    Get PDF
    Computer program based on fixed conductance parameter yields minimum weight design. Second program employs variable conductance parameter and variable ratio of fin length to tube outside radius, and is used for radiator designs with geometric limitations. Major outputs of the two programs are given

    Hybrid thermocouple development program

    Get PDF
    The design and development of a hybrid thermocouple, having a segmented SiGe-PbTe n-leg encapsulated within a hollow cylindrical p-SiGe leg, is described. Hybrid couple efficiency is calculated to be 10% to 15% better than that of a all-SiGe couple. A preliminary design of a planar RTG, employing hybrid couples and a water heat pipe radiator, is described as an example of a possible system application. Hybrid couples, fabricated initially, were characterized by higher than predicted resistance and, in some cases, bond separations. Couples made later in the program, using improved fabrication techniques, exhibited normal resistances, both as-fabricated and after 700 hours of testing. Two flat-plate sections of the reference design thermoelectric converter were fabricated and delivered to NASA Lewis for testing and evaluation

    Efficient calculation of chiral three-nucleon forces up to N3LO for ab initio studies

    Full text link
    We present a novel framework to decompose three-nucleon forces in a momentum space partial-wave basis. The new approach is computationally much more efficient than previous methods and opens the way to ab initio studies of few-nucleon scattering processes, nuclei and nuclear matter based on higher-order chiral 3N forces. We use the new framework to calculate matrix elements of chiral three-nucleon forces at N2LO and N3LO in large basis spaces and carry out benchmark calculations for neutron matter and symmetric nuclear matter. We also study the size of the individual three-nucleon force contributions for 3^3H. For nonlocal regulators, we find that the sub-leading terms, which have been neglected in most calculations so far, provide important contributions. All matrix elements are calculated and stored in a user-friendly way, such that values of low-energy constants as well as the form of regulator functions can be chosen freely.Comment: 10 pages, 4 figure

    Use of computer-aided analysis techniques for cover type mapping in areas of mountainous terrain

    Get PDF
    There are no author-identified significant results in this report

    cAMP Signaling Enhances HIV-1 Long Terminal Repeat (LTR)-directed Transcription and Viral Replication in Bone Marrow Progenitor Cells.

    Get PDF
    CD34+ hematopoietic progenitor cells have been shown to be susceptible to HIV-1 infection, possibly due to a low-level expression of CXCR4, a coreceptor for HIV-1 entry. Given these observations, we have explored the impact of forskolin on cell surface expression of CXCR4 in a cell line model (TF-1). The elevation of intracellular cyclic adenosine monophosphate (cAMP) by forskolin through adenylyl cyclase (AC) resulted in transcriptional upregulation of CXCR4 with a concomitant increase in replication of the CXCR4-utilizing HIV-1 strain IIIB. Transient expression analyses also demonstrated an increase in CXCR4-, CCR5-, and CXCR4-/CCR5-utilizing HIV-1 (LAI, YU2, and 89.6, respectively) promoter activity. Studies also implicated the protein kinase A (PKA) pathway and the downstream transcription factor CREB-1 in interfacing with cAMP response elements located in the CXCR4 and viral promoter. These observations suggest that the cAMP signaling pathway may serve as a regulator of CXCR4 levels and concomitantly of HIV-1 replication in bone marrow (BM) progenitor cells. © 2017, © The Author(s) 2017
    corecore